文章编号: 0253-2239(2009)12-3477-05

三硼酸锂晶体 I 类和 II 类相位匹配角及 有效非线性系数的计算

王爱坤 任清华 薛建华

(河北科技大学物理系,河北石家庄 050018)

摘要 从非线性光学电磁场理论出发,分别数值计算了硼酸锂(LBO)晶体基频光波长 1064 nm 的I类和II类倍频相位 匹配角及有效非线性系数。I类相位匹配角在第一象限的范围约是(34°~90°,0~24°),有效非线性系数的平方在匹配 角约为(42.2°,56°)时有最大值,匹配角约为(90°,45.6°)时有次极大值,且最大值与次极大值近似相等;II类相位匹配 角在第一象限的范围约为(0~90°,45.5°~90°),有效非线性系数的平方在匹配角约为(0,90°)时有最大值。 关键词 非线性光学;倍频;相位匹配;有效非线性系数;数值计算;三硼酸锂晶体 中图分类号 O437 文献标识码 A doi: 10.3788/AOS20092912.3477

Calculation of Type I and Type I Phase-Matching Angle and Effective Nonlinear Coefficients of LBO Crystals

Wang Aikun Ren Qinghua Xue Jianhua

(Physics Department, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

Abstract From nonlinear optics and electromagnetic field theory, type I and type II frequency-doubling phasematching angle and effective nonlinear coefficient of LBO crystal whose fundamental frequency wavelength is 1064 nm are respectively calculated with numerical method. The range of type I phase-matching angle in the first quadrant is about $(34^{\circ} \sim 90^{\circ}, 0 \sim 24^{\circ})$, and the square of the effective nonlinear coefficient have a maxmum value when the phase-matching angle approximates $(42.2^{\circ}, 56^{\circ})$ and have the second largest value when the phase-matching angle approximates $(90^{\circ}, 45.6^{\circ})$. The two values are approximately equivalent. The range of type II phase-matching angle in the first quadrant is $about(0 \sim 90^{\circ}, 45.5^{\circ} \sim 90^{\circ})$, and the square of the effective nonlinear coefficients have a maximum value when the phase-matching angle approximates $(0,90^{\circ})$.

Key words nonlinear optics; frequency doubling; phase matching; effective nonlinear coefficients; numerical calculation; LBO crystal

1 引 言

非线性光学频率变换技术一直是激光领域的研究热点^[1~3],而倍频是其中最典型,应用最广泛的技术^[4]。三硼酸锂(LBO)晶体非线性较强,转换效率较高,是相关专业研究的热点之一^[5~7]。LBO 晶体 具有较高的破坏阈值、较宽的允许角和较小的走离 角^[8], I 类和 II 类相位匹配范围都比较宽,是一种性 能优异的非线性光学晶体^[2,6,9]。LBO 晶体是负双 轴晶体,属于 mm2 正交点群^[10]。

近年来,有关研究 LBO 晶体非线性性质的文章 很多^[5~7,11],但其主要研究方法和内容为利用 MATLAB软件针对特定波长模拟计算 I 类相位匹 配角范围及特定匹配角下 I,II 类相位匹配的有效 非线性系数的随波长的变化规律^[5,12]。下面针对基 频光λ=1064 nm,用 FORTRAN 语言编程数值计 算 LBO 晶体 I 类和 II 类倍频相位匹配角的范围以

收稿日期: 2009-01-07; 收到修改稿日期: 2009-03-17

基金项目:河北省教育厅科技攻关计划项目(Z2007228)和河北科技大学青年基金(2006JC-17)资助课题。

作者简介:王爱坤(1962—),女,博士,教授,主要从事凝聚态物理方面的研究。E-mail: wak1962@sina.com

报

及全匹配角范围内的有效非线性系数。

2 LBO 晶体相位匹配角范围计算

2.1 【类倍频相位匹配角

根据二级非线性光学效应的电磁场理论可知共 线和频光强为[2]

$$|I_{3}| = \frac{8\pi^{2}l^{2}d_{\text{eff}}^{2}}{n_{1}n_{2}n_{3}\lambda_{3}^{2}c\,\varepsilon_{0}}|I_{1}||I_{2}|\left[\sin\left(\frac{\Delta kl}{2}\right)/\left(\frac{\Delta kl}{2}\right)\right]^{2},$$
(1)

式中 d_{eff} 为有效非线性系数,n₁,n₂ 分别为两基频光 折射率,n₃为和频光折射率,l为光波在晶体中所走 过的距离; $\Delta k = k_1 + k_2 - k_3$, k_1 , k_2 分别为两基频光 波的波矢, k。为和频光的波矢。因此转换效率与三 波波矢密切相关。显然当 $\Delta k = 0$ 时,转换效率最高, 这一条件称为相位匹配条件。

根据波矢与频率和折射率之间的关系,可以把 相位匹配条件转化为有关三波的折射率方程,以便 用于不同晶体不同类型的相位匹配角的计算。

由于单轴晶体折射率面具有回转对称性,在单 轴晶体中三波互作用的相位匹配问题容易解决。而 双轴晶体的折射率曲面在直角坐标中是四次曲面 (双壳曲面)^[13],对称性较低,其相位匹配问题一般 不能简单地解析求解而应采用数值计算。

取光学主轴坐标系并按一般习惯约定三个主折 射率满足 $n_r < n_v < n_z$,双轴晶体双壳层折射率曲 面的方程为[14]

$$\frac{k_x^2}{n^{-2} - n_x^{-2}} + \frac{k_y^2}{n^{-2} - n_y^{-2}} + \frac{k_z^2}{n^{-2} - n_z^{-2}} = 0, \quad (2)$$

设k与z轴的夹角为 θ ,k在 yoz 平面的投影与x轴 的夹角为 φ ,则有

$$\begin{cases} k_x = \sin \theta \cos \varphi, \\ k_y = \sin \theta \sin \varphi, \\ k = \cos \theta. \end{cases}$$
(3)

为使方程简化,设

$$a = n_x^{-2}, \quad b = n_y^{-2}, \quad c = n_z^{-2},$$
 (4)

$$B = -(b+c)\sin^2\theta\cos^2\varphi - (a+c)\sin^2\theta\sin^2\varphi - (a+c)\sin^2\theta\sin^2\varphi - (a+c)\sin^2\theta\sin^2\varphi - (a+c)\sin^2\theta\sin^2\varphi$$

$$C = h c sin^2 \theta c s^2 \alpha + a c sin^2 \theta sin^2 \alpha - a h c s^2 \theta$$
(6)

$$c = n^{-2}, \qquad (7)$$

$$x = n^{-2}$$
,

$$x^2 + Bx + C = 0$$

解得两个偏振方向的折射率为

$$n = \sqrt{2} / \sqrt{-B} \pm \sqrt{B^2 - 4C},$$
 (8)

式中"+"表示快光所对应的折射率,"一"表示慢光 所对应的折射率。即波矢方向为 (θ, φ) , 频率为 ω_i 的光波对应的快、慢光折射率分别为

$$n''(\omega_{i}) = \sqrt{2} / \sqrt{-B_{i} + \sqrt{B_{i}^{2} - 4C_{i}}},$$

$$n'(\omega_{i}) = \sqrt{2} / \sqrt{-B_{i} - \sqrt{B_{i}^{2} - 4C_{i}}},$$
(9)

根据波矢与频率和折射率之间的关系,双轴晶 体 | 类和频相位匹配条件为^[15]:

$$\omega_1 n'(\omega_1) + \omega_2 n'(\omega_2) = \omega_3 n''(\omega_3).$$
(10)

I 类倍频 ($\omega_1 = \omega_2, \omega_3 = 2\omega_1$) 相位匹配条件简 化为[12]

$$n'(\omega_1) = n''(\omega_3),$$

即:

$$1/\sqrt{-B_1 - \sqrt{B_1^2 - 4C_1}} = 1/\sqrt{-B_3 + \sqrt{B_3^2 - 4C_3}},$$
(11)

(11)式是关于(θ,φ)的复杂方程,难以求出解析解。 (11) 式含有基频和倍频主折射率。LBO晶体 1064 nm的三个主折射率分别为^[2]:1.5656,1.5905, 1.6055;532 nm 的三个主折射率分别为:1.5785, 1.6065,1.6212。采用 FORTRAN 语言编写程序对 (11)式进行数值计算,因为在不同(θ,φ)值时(11)式 左右两边函数的变化率差别很大,所以计算时采用变 精度计算。根据双折射晶体的折射率对称性可知,只 $\pi(\theta, \varphi)$ 在(0~90°)范围内进行计算就足够了。计算 结果如图1所示。

从计算结果可以看出,在基频光波长为 1064 nm时,LBO 晶体 I 类倍频相位匹配角 θ 第一 象限的范围约是 $34^{\circ} \sim 90^{\circ}$, φ 第一象限的范围约是 0~24°;其它区域不满足相位匹配条件。

2.2 ■类倍频相位匹配角

双轴晶体 II 类相位匹配条件可表示为^[15]
$$\omega_1 n'(\omega_1) + \omega_2 n''(\omega_2) = \omega_3 n''(\omega_3),$$
 (12)

取
$$\omega_1 = \omega_2, \omega_3 = 2\omega_1$$
 则(12)式变为:
 $n'(\omega_1) + n''(\omega_1) = 2n''(\omega_3)$

即:

$$\frac{1}{\sqrt{-B_{1} - \sqrt{B_{1}^{2} - 4C_{1}}} + 1} + \frac{1}{\sqrt{-B_{1} + \sqrt{B_{1}^{2} - 4C_{1}}}} = \frac{2}{\sqrt{-B_{2} + \sqrt{B_{2}^{2} - 4C_{2}}}}.$$
(13)

将(4)式~(8)式及三波的主折射率数据代入 (13)式,得到关于(θ,φ)的复杂方程。同 2.1 计算方 法,LBO 晶体II类相位匹配角计算结果如图 2 所示。

图 2 LBO II 类匹配的 θ-φ 曲线图 Fig. 2 Curve of θ and φ in type II phase matching of LBO crystal

从图 2 可以看出,LBO 晶体波长同为 1064 nm 的两慢、快基频光转化为波长为 532 nm 的快光的 Ⅱ类相位匹配角 θ 第一象限的范围约是 0~90°, φ 第一象限的范围约是 45.5°~90°。

3 LBO 晶体有效非线性系数的计算

从(1)式可以看出,在相位匹配条件下,三波相 互作用和频(或倍频)的光强与有效非线性系数的平 方成正比,由于三波的折射率随(θ,φ)不同变化不 大,因此计算各类匹配条件下的有效非线性系数对 研究其转换效率必不可少。

计算两类相位匹配有效非线性系数都要用到 慢、快光电位移单位矢量 b^{e1} 和 b^{e2} 在三个主轴上的 投影。为了使计算结果准确可靠,首先推导相关公 式。快、慢光的电位移偏振方向如图 3 所示^[16,17]。

图 3 快、慢光偏振方向示意图 Fig. 3 Polarization directions of fast and show lights

经过推导,可得慢光电位移单位矢量 **b**¹ 和快光 电位移单位矢量 **b**⁶ 分别为^[18]

$$\boldsymbol{b}^{e_1} = \begin{bmatrix} \cos\theta\cos\varphi\cos\delta_i - \sin\varphi\sin\delta_i \\ \cos\theta\sin\varphi\cos\delta_i + \cos\varphi\sin\delta_i \\ -\sin\theta\cos\delta_i \end{bmatrix} = \begin{bmatrix} b_{1^1}^{e_1} \\ b_{2^1}^{e_1} \\ b_{3^1}^{e_1} \end{bmatrix},$$
(14)
$$\boldsymbol{b}^{e_2} = \begin{bmatrix} -\cos\theta\cos\varphi\sin\delta_i - \sin\varphi\cos\delta_i \\ -\cos\theta\sin\varphi\sin\delta_i + \cos\varphi\cos\delta_i \\ \sin\theta\sin\delta_i \end{bmatrix} = \begin{bmatrix} b_{1^2}^{e_2} \\ b_{2^2}^{e_2} \\ b_{3^2}^{e_2} \end{bmatrix},$$
(15)

式中 δ_i 是 $b^{e_2}(\omega_i)$ 与z-k平面的夹角,它是 θ, φ 和 Ω_i 的函数, Ω_i 是双轴晶体的光轴与z轴的夹角, δ_i 和 Ω_i 的求解公式为^[12,19]

$$\tan \Omega_i = \frac{n_z(\omega_i)}{n_x(\omega_i)} \left[\frac{n_y^2(\omega_i) - n_x^2(\omega_i)}{n_z^2(\omega_i) - n_y^2(\omega_i)} \right]^{1/2}, \quad (16)$$

$$\cot \delta_i = \frac{\cot^2 \Omega_i \sin^2 \theta - \cos^2 \theta \cos^2 \varphi + \sin^2 \varphi}{\cos \theta \sin(2\varphi)}.$$
(17)

下面采用精确的"姚方法之二^[6]"计算有效非线 性系数。"姚方法之二"指的是不忽略电场强度 *E* 和电位移矢量 *D* 的走离效应,并且利用电位移的单 位矢量与波矢方向 *K*(θ,φ)之间的关系,在主轴坐标 系中得到电场强度的表达式,从而计算有效非线性 系数。

频率为ωi的慢、快两个偏振分量表示为

$$\mathbf{E}^{\epsilon_{1}}(\boldsymbol{\omega}_{i}) = \sqrt{\frac{\left[\boldsymbol{b}_{1}^{\epsilon_{1}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{x}^{4}(\boldsymbol{\omega}_{i})} + \frac{\left[\boldsymbol{b}_{2}^{\epsilon_{1}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{y}^{4}(\boldsymbol{\omega}_{i})} + \frac{\left[\boldsymbol{b}_{3}^{\epsilon_{1}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{z}^{4}(\boldsymbol{\omega}_{i})} \cdot \mathbf{D}^{\epsilon_{1}}(\boldsymbol{\omega}_{i}) = P(\boldsymbol{\omega}_{i})\mathbf{D}^{\epsilon_{1}}(\boldsymbol{\omega}_{i}), \quad (18)$$

$$\boldsymbol{E}^{\boldsymbol{e}_{2}}(\boldsymbol{w}_{i}) = \sqrt{\frac{\left[\boldsymbol{b}_{1}^{\boldsymbol{e}_{2}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{x}^{4}(\boldsymbol{\omega}_{i})} + \frac{\left[\boldsymbol{b}_{2}^{\boldsymbol{e}_{2}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{y}^{4}(\boldsymbol{\omega}_{i})} + \frac{\left[\boldsymbol{b}_{3}^{\boldsymbol{e}_{3}}(\boldsymbol{\omega}_{i})\right]^{2}}{n_{z}^{4}(\boldsymbol{\omega}_{i})}} \cdot \\ \boldsymbol{D}^{\boldsymbol{e}_{2}}(\boldsymbol{\omega}_{i}) = \boldsymbol{O}(\boldsymbol{\omega}_{i})\boldsymbol{D}^{\boldsymbol{e}_{2}}(\boldsymbol{\omega}_{i}), \qquad (19)$$

设 $a^{e_1}(\omega_i), a^{e_2}(\omega_i)$ 分别为 $E^{e_1}(\omega_i)$ 及 $E^{e_2}(\omega_i)$ 的单位 矢量,可得

$$\boldsymbol{a}^{e_{1}}(\omega_{i}) = \frac{1}{E^{e_{1}}(\omega_{i})} \begin{bmatrix} E^{e_{1}}_{1}(\omega_{i}) \\ E^{e_{1}}_{2}(\omega_{i}) \\ E^{e_{1}}_{3}(\omega_{i}) \end{bmatrix} = \\ \frac{1}{P(\omega_{i})} \begin{bmatrix} n_{x}^{-2}(\omega_{i})b^{e_{1}}_{1}(\omega_{i}) \\ n_{y}^{-2}(\omega_{i})b^{e_{1}}_{2}(\omega_{i}) \\ n_{z}^{-2}(\omega_{i})b^{e_{1}}_{3}(\omega_{i}) \end{bmatrix} = \begin{bmatrix} a^{e_{1}}_{1}(\omega_{i}) \\ a^{e_{1}}_{2}(\omega_{i}) \\ a^{e_{1}}_{3}(\omega_{i}) \end{bmatrix}, \quad (20)$$
$$\boldsymbol{a}^{e_{2}}_{3}(\omega_{i}) = \frac{1}{Q(\omega_{i})} \begin{bmatrix} n_{x}^{-2}(\omega_{i})b^{e_{2}}_{2}(\omega_{i}) \\ n^{-2}_{y}(\omega_{i})b^{e_{2}}_{2}(\omega_{i}) \\ n^{-2}_{z}(\omega_{i})b^{e_{2}}_{2}(\omega_{i}) \end{bmatrix} = \begin{bmatrix} a^{e_{1}}_{1}(\omega_{i}) \\ a^{e_{2}}_{2}(\omega_{i}) \\ a^{e_{2}}_{2}(\omega_{i}) \\ a^{e_{2}}_{3}(\omega_{i}) \end{bmatrix}. \quad (21)$$

双轴晶体 I 类相位匹配时的 d_{eff} 为^[16]

式中 d_{ijk} 为二级非线性极化张量,考虑到 LBO 晶体 d_{ijk} 简化张量 d_{iN} 只有 3 个不为零的独立分量以及压 电轴与光学主轴之间的对应关系(X-x,Y-z,Z-y), (22)式写为

 $\begin{aligned} d_{\text{eff}}(I) = & d_{31} \left(a_{1^2}^{e_2} A_{16} + a_{2^2}^{e_2} A_{11} \right) + \\ & d_{32} \left(a_{2^2}^{e_2} A_{13} + a_{3^2}^{e_2} A_{14} \right) + d_{33} a_{2^2}^{e_2} A_{12} , \ (23) \\ \vec{x} \oplus^{[8]} d_{31} = & 0.61, d_{32} = 2.69, d_{33} = -2.24 \, . \end{aligned}$

LBO 晶体 $d_{\text{eff}}^2(I)$ 数值计算结果如图 4 所示。

Fig. 4 Curves of d_{eff}^2 and θ in type I frequency-doubling phase matching of LBO crystals whose fundamental frequency wavelength is at 1064 nm

从图 4 可以看出,有效非线性系数的平方在 $\theta \approx$ 42.2°时有最大值, $\theta \approx 90°$ 时有次极大值,最大值与次级大值近似相等。说明最佳值匹配角是 $\theta \approx 42.2°$ 和 $\theta \approx 90°$ 。

同理可得双轴晶体Ⅱ类相位匹配的 *d*²_{eff}(Ⅱ)为

$$d_{ ext{eff}}([]) = \pmb{a}^{e_2} \pmb{d}_{ijk} \pmb{a}^{e_1}_j \pmb{a}^e_k = egin{bmatrix} a_1^{e_2} \ a_2^{e_2} \ a_3^{e_2} \ a_3^{e_1} a_3^{e_1} \ a_3^{e_2} \ a_3^{e_1} a_3^{e_1} \ a_3^{e_1} a_3^{e_2} \ a_3^{e_1} a_3^{e_2} \ a_3^{e_1} a_3^{e_1} \ a_3^{e_1} a_3^{e_1} \ a_3^{e_1} a_3^{e_1} \ a_3^{e_1}$$

$$\begin{bmatrix} a_{1^{e_{2}}} \\ a_{2^{e_{2}}}^{e_{2}} \\ a_{3^{e_{2}}}^{e_{2}} \end{bmatrix} \boldsymbol{d}_{ijk} \begin{bmatrix} A_{21} \\ A_{22} \\ A_{23} \\ A_{24} \\ A_{25} \\ A_{26} \end{bmatrix}, \qquad (24)$$

LBO 晶体 II 类相位匹配有效非线性系数

 $d_{\rm eff}({\rm I\!I}) = d_{31}(a_{1^2}^{e_2}A_{26} + a_{2^2}^{e_2}A_{21}) +$

$$d_{32}(a_{2}^{e_2}A_{23} + a_{3}^{e_2}A_{24}) + d_{33}a_{2}^{e_2}A_{22}.$$
 (25)

LBO 晶体 d_{eff}^2 (**I**)数值计算结果如图 5 所示, 从图 5 可以看出,有效非线性系数的平方在 $\theta \approx 0$ 有最大值,并且 θ 在 $0 \sim 11^{\circ}$ 范围内 d_{eff}^2 变化不大。

图 5 LBO 晶体基频波长 1064 nm 的 [] 类倍频 d²_{eff}

Fig. 5 Curves of $d_{\rm eff}^2$ and θ in type II frequency-doubling phase matching of LBO crystals whose fundamental frequency wavelength is at 1064 nm

若要精确计算双轴晶体的转换效率,除了要计 算有效非线性系数之外,还要计算三波在各匹配角 的折射率、三波相互间的离散角以及两基频光的光 强随入射深度的变化对转换效率的影响。

4 结 论

从非线性光学电磁场理论出发,利用 FORTRAN 语言编程,分别数值计算了 LBO 晶体基频光波长为 1064 nm 的I类和II类倍频相位匹配角及全匹配角范 围内的有效非线性系数。I类相位匹配角在第一象限 的范围约是(34°~90°,0~24°),有效非线性系数的平 方在匹配角约为(42.2°,56°)时有最大值,匹配角约为 (90°,45.6°)时有次极大值,且最大值与次级大值近似 相等,说明最佳值匹配角是 $\theta \approx 42.2°$ 和 $\theta \approx 90°;II$ 类相 位匹配角在第一象限的范围约为(0~90°, 45.5°~90°),有效非线性系数的平方在匹配角约为 (0,90°)时有最大值,并且 θ 在0~11°范围内 d_{eff}^2 变化 不大。

所得结果对提高 LBO 晶体 Ⅰ类、Ⅱ类相位匹配

倍频转换效率具有重要指导作用。同时其研究、计 算方法可为同类非线性光学材料的光学性质的研究 提供参考。

参考文献

- l Li Wang, Jianhua Xue. Performance curves comparision of THG efficiency in CsLiB₆O₁₀ on flattened Gaussian and Gaussian beams [J]. *Chin. Opt. Lett.*, 2003, 1(12): 708~710
- 2 Yao jianquan, Xu degang. All Solid State Laser and Nonlinear Optical Frequency Conversion Technology[M]. Beijing: Science Press, 2007, 105~111,656,663~683,704~705 姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术[M].
- 北京:科学出版社,2007,105~111,656,663~683,704~705
- 3 Li Wang, Jianhua Xue. Efficiency comparison analysis of second harmonic Ggeneration on flattened Gaussian and Gaussian beams through a crystal CsLiB₆O₁₀ [J]. J. Appl. Phys., 2002, 41: 7373~7376
- 4 Rong Shankui, Yu Ting, Zhou Jun et al.. High power all-solidstate blue-green laser based on quadrature frequncy conversion [J]. Chinese J. Lasers, 2007, 34(12): 1634~1638

戎善奎,余 婷,周 军等.基于正交频率变换的高功率蓝绿全 固态激光器[J].中国激光,2007,**34**(12):1634~1638

- 5 Shi Jingbo, Zhang Kai, Ma Yi et al.. Numerical simulation and experimental research on 589 nm laser frequency-summed by LBO [J]. High Power Laser and Partiacle Beams, 2006, 18: 1447~1450
- 石靖波,马 凯,马 毅等. LBO 晶体和频产生 589 nm 激光的 数值模拟及实验研究 [J]. 强激光与粒子束, 2006, 18: 1447~1450
- 6 Peng Jiahui, Li Ruxin, Jin Shiqi *et al.*. Optical parametric chirped pulse amplifier with biaxial crystal [J]. *Acta Optica Sinica*, 2000, **20**(9): 1153~1159 彭家晖, 李儒新, 金石琦等. 双轴晶体光学参量放大的研究[J].

光学学报, 2000, **20**(9): 1153~1159 7 Cai Tianzhi, Xu Huiying, Wang Xiaozhong *et al.*. Intracavity frequency doubling characteristic of LBO[J]. *Infrared and Laser Engineering*, 2007, **36**(S): 71~74

8 Wang Wei, Liu Xingang, Liu Yingtong. Laser diode pumped Nd:NYW/LBO green laser[J]. Chinese J. Lasers, 2007, 34(5): 646~648

王 巍, 刘炘钢, 刘英同.激光二极管抽运的 Nd:NYW/LBO 绿 色激光器[J].中国激光, 2007, **34**(5):646~648

9 Tan Tianya, Huang Jianbing, Zhan Meiqiong *et al.*. Design of 1064 nm, 532 nm frequency-tripled antireflection coating for LBO [J]. *Acta Optica Sinica*, 2007, **27**(7): 1327~1332 谭亚天, 責美琼 等. 占美琼 等. 三硼酸锂晶体上 1064 nm,532 nm,

355 nm 三倍频增透膜的设计[J]. 光学学报, 2007, **27**(7): 1327~1332

10 Li Chaoyang, Wang Yonggang, Huang Liu et al.. Frequency-

doubling study of noncritical phase-matched LBO crystal[J]. J. Beijing University of Technoligy, 2003, **29**(2): 221~224 李朝阳,王勇刚,黄 骝等. LBO 晶体非临界相位匹配倍频研 究[J]. 北京工业大学学报, 2003, **29**(2): 221~224

- 11 Yang Xuelin, Xie Shengwu. Analysis of non-collinear phase matching second harmonic generation phenomenon in biaxial crystals[J]. Acta Optica Sinica, 1995, 15(8): 1005~1009 杨学林,谢绳武. 双轴晶体中非共线相位匹配二次谐波产生现象 分析[J]. 光学学报, 1995, 15(8): 1005~1009
- 12 Liu Lijie, Yu Rongjin, Ma Shaojie. Rearsh on the characteristics of sumfrequency generaction and frequency doubiling in biaxial crystal LiB₃O₅ [J]. Chinese J. Luminescence, 1991, 12 (2): 89~97

刘立杰,于荣金,马少杰.双轴晶体 LiB₈O₅ 和频与倍频转换特性的研究[J].发光学报,1991,**12**(2):89~97

13 Yang Ting, Jing Hongmei, Liu Dahe. Jones vectors for incident and refracted electric fields of a birefringent crystal and modification of fresnel equation on interface [J]. Acta Optica Sinica, 2007, 27(1): 171~176

杨 婷,景红梅,刘大禾.双折射晶体入射、折射光电场矢量的 琼斯描述及界面处菲涅尔方程的修正[J].光学学报,2007, 27(1):171~176

- 14 Ye Jianhua, Fan Qikang. Accurate expression of effective nonlinear cofficients in biaxial crystals[J]. Laser Technology, 1992, 16(4): 225~228
 叶建华,范琪康. 双轴晶体有效非线性系数的准确表达[J]. 激光技术, 1992, 16(4): 225~228
- 15 Yang Shengli. Phase matching paramiters for doublings in principal planes of biaxial crystals[J]. Acta Optica Sinica, 2002, 22(10): 1159~1164

杨胜利. 双轴晶体主平面上倍频的相位匹配参量[J]. 光学学报, 2002, **22**(10): 1159~1164

16 Xie Shengwu, Guo Jiarong, Zhao Jiaju. The calculation of the phase matching angles and the effective second-order nonlinear coefficients in biaxial crystals [J]. J. Shanghai Jiaotong University, 1982, 01: 37~52

谢绳武,郭嘉荣,赵家驹. 双轴晶体倍频相位匹配角及有效二阶 非线性系数的数值计算[J]. 上海交通大学学报, 1982, 01:37~52

- 17 Ma Yanghua, Zhao Jianlin, Wang Wenli *et al.*. Optimum phase matching for SHG in biaxial crystals [J]. *Acta Physica Sinica*, 2005, 54(5): 2084~2088
 马仰华,赵建林,王文礼等.双轴晶体中二次谐波产生的最佳相位匹配条件[J]. 物理学报,2005,54(5): 2084~2088
- 18 Yang Xuelin, Xie Shengwu. Calculation methods of the thirdorder effective nonlinear susceptibility in crystals[J]. Acta Optica Sinica, 1995, 15(4): 411~416 杨学林,谢绳武. 晶体中三阶有效非线性系数的计算方法[J]. 光 学学报, 1995, 15(4): 411~416
- 19 Yin Xin. Calculation of effective frequency-doubling coefficients of biaxial crystals[J]. Chinese J. Lasers, 1992, 18(2): 156~160
 尹 鑫.双轴晶体有效倍频系数的计算[J].中国激光, 1992, 18(2): 156~160